Extensions of Classic Combinatorial Games

Nelson Niu

Mentor: Dr. Tanya Khovanova

PRIMES Conference May 21, 2016

Nelson Niu

Extensions of Classic Combinatorial Games 1 / 35

(日) (周) (三) (三)

Rules

There are two piles of matchsticks. Each player has two types of moves:

- Type I Take a positive number of matches from one pile.
- Type II Take the same positive number of matches from both piles.

The player who takes the last matchstick wins.

イロト 不得下 イヨト イヨト

Rules

There are two piles of matchsticks. Each player has two types of moves:

- Type I Take a positive number of matches from one pile.
- Type II Take the same positive number of matches from both piles.

The player who takes the last matchstick wins.

イロト 不得下 イヨト イヨト

Rules

There are two piles of matchsticks. Each player has two types of moves:

- Type I Take a positive number of matches from one pile.
- Type II Take the same positive number of matches from both piles.

The player who takes the last matchstick wins.

- 4 周 ト 4 日 ト 4 日 ト

Rules

There are two piles of matchsticks. Each player has two types of moves:

- Type I Take a positive number of matches from one pile.
- Type II Take the same positive number of matches from both piles.

The player who takes the last matchstick wins.

イロト 不得下 イヨト イヨト

Game Positions

We write (a_1, \ldots, a_n) to denote a position with *n* piles of sizes a_1, \ldots, a_n . For Wythoff's game, n = 2.

Definition

A game is at a P-position when the person who played **Previously** will win, provided both players play optimally.

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Game Positions

We write (a_1, \ldots, a_n) to denote a position with *n* piles of sizes a_1, \ldots, a_n . For Wythoff's game, n = 2.

Definition

A game is at a P-position when the person who played **Previously** will win, provided both players play optimally.

Definition

A game is at an N-position when the person to play **Next** will win, provided both players play optimally.

ヘロト 人間ト イヨト イヨト

Game Positions

We write (a_1, \ldots, a_n) to denote a position with *n* piles of sizes a_1, \ldots, a_n . For Wythoff's game, n = 2.

Definition

A game is at a P-position when the person who played **Previously** will win, provided both players play optimally.

Definition

A game is at an N-position when the person to play **Next** will win, provided both players play optimally.

- All positions are either P-positions or N-positions.
- Every move from a P-position leads to an N-position.
- From every N-position, there exists a move to a P-position.
- One can always compute whether a position is a P-position or an N-position.

Theorem (Wythoff, 1907)

All positions of the form $(\lfloor n\phi \rfloor, \lfloor n\phi^2 \rfloor)$ or $(\lfloor n\phi^2 \rfloor, \lfloor n\phi \rfloor)$, for nonnegative integers n, are P-positions. All other positions are N-positions. Here $\phi = \frac{1+\sqrt{5}}{2}$.

For example, (0, 0), (1, 2), (2, 1), (3, 5), (5, 3), (4, 7), (7, 4), ... are all P-positions.

Rules

There are two piles of matchsticks. Each player has two types of moves:

- Type I Take a positive number of matches from one pile.
- Type II Take a matches from one pile and b matches from the other, provided that a and b are positive and $a \equiv b \pmod{m}$.

The player who takes the last matchstick wins.

Nelson Niu

Extensions of Classic Combinatorial Games

10 / 35

11 / 35

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

12 / 35

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

10	\mathcal{N}		\mathcal{N}								
9	\mathcal{N}	\mathcal{N}									
8	\mathcal{N}		\mathcal{N}								
7	\mathcal{N}	\mathcal{N}									
6	\mathcal{N}		\mathcal{N}								
5	\mathcal{N}	\mathcal{N}									
4	\mathcal{N}		\mathcal{N}								
3	\mathcal{N}	\mathcal{N}									
2	\mathcal{N}		\mathcal{N}								
1	\mathcal{N}	\mathcal{N}									
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

13 / 35

10	\mathcal{N}		\mathcal{N}								
9	\mathcal{N}	\mathcal{N}									
8	\mathcal{N}		\mathcal{N}								
7	\mathcal{N}	\mathcal{N}									
6	\mathcal{N}		\mathcal{N}								
5	\mathcal{N}	\mathcal{N}									
4	\mathcal{N}		\mathcal{N}								
3	\mathcal{N}	\mathcal{N}									
2	\mathcal{N}	\mathcal{P}	\mathcal{N}		\mathcal{N}		\mathcal{N}		\mathcal{N}		\mathcal{N}
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}		\mathcal{N}		\mathcal{N}		\mathcal{N}	
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

14 / 35

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}										
6	\mathcal{N}										
5	\mathcal{N}										
4	\mathcal{N}										
3	\mathcal{N}										
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

15 / 35

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}										
6	\mathcal{N}										
5	\mathcal{N}										
4	\mathcal{N}										
3	\mathcal{N}										
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

16 / 35

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}										
6	\mathcal{N}										
5	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
4	\mathcal{N}										
3	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

17 / 35

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
6	\mathcal{N}										
5	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
4	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}						
3	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

18 / 35

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
6	\mathcal{N}										
5	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
4	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}						
3	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

19 / 35

10	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
6	\mathcal{N}	\mathcal{P}									
5	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	$ \mathcal{N} $
4	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}						
3	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

20 / 35

10	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
6	\mathcal{N}	\mathcal{P}									
5	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
4	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}						
3	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

21 / 35

Theorem (N.)

Let a_m be the unique integer for which $\lfloor a_m \phi \rfloor < m \leq \lfloor (a_m + 1)\phi \rfloor$. Then the P-positions of m-modular Wythoff consist of the set $\mathcal{P}_{a_m} =$ $\{(0,0), (\lfloor \phi \rfloor, \lfloor \phi^2 \rfloor), (\lfloor \phi^2 \rfloor, \lfloor \phi \rfloor), \dots, (\lfloor a_m \phi \rfloor, \lfloor a_m \phi^2 \rfloor), (\lfloor a_m \phi^2 \rfloor, \lfloor a_m \phi \rfloor)\}.$ Here $\phi = \frac{1+\sqrt{5}}{2}$.

イロト イポト イヨト イヨト 二日

Theorem (N.)

Let a_m be the unique integer for which $\lfloor a_m \phi \rfloor < m \leq \lfloor (a_m + 1)\phi \rfloor$. Then the P-positions of m-modular Wythoff consist of the set $\mathcal{P}_{a_m} =$ $\{(0,0), (\lfloor \phi \rfloor, \lfloor \phi^2 \rfloor), (\lfloor \phi^2 \rfloor, \lfloor \phi \rfloor), \dots, (\lfloor a_m \phi \rfloor, \lfloor a_m \phi^2 \rfloor), (\lfloor a_m \phi^2 \rfloor, \lfloor a_m \phi \rfloor)\}.$ Here $\phi = \frac{1+\sqrt{5}}{2}$.

Note that

$$\mathcal{P}_{a_2} \subseteq \mathcal{P}_{a_3} \subseteq \mathcal{P}_{a_4} \subseteq \cdots \subseteq \mathcal{P},$$

where \mathcal{P} is the set of P-positions for the original Wythoff's game.

イロト 不得下 イヨト イヨト

Generalizations of *m*-modular Wythoff

3 piles: What should the possible moves be?

∃ → (∃ →

• Any subset of piles

•
$$(0,0,-3)$$
 or $(-4,-8,-6)$ or $(-5,0,-3)$ for $m=2$

∃ → (∃ →

- Any subset of piles
 - (0,0,-3) or (-4,-8,-6) or (-5,0,-3) for m=2
- One pile or all nonempty piles, positive amount per pile
 - (0,0,-3) or (-4,-8,-6) or, only when second pile empty, (-5,0,-3) for m = 2

(本間) (本語) (本語) (語)

- Any subset of piles
 - (0,0,-3) or (-4,-8,-6) or (-5,0,-3) for m=2
- One pile or all nonempty piles, positive amount per pile
 - (0, 0, -3) or (-4, -8, -6) or, only when second pile empty, (-5, 0, -3) for m = 2
- One pile or all piles, nonnegative amount per pile
 - (0,0,-3) or (-4,-8,-6) or (-6,0,-2) but not (-5,0,-3) for m=2

- Any subset of piles
 - (0,0,-3) or (-4,-8,-6) or (-5,0,-3) for m=2
- One pile or all nonempty piles, positive amount per pile
 - (0, 0, -3) or (-4, -8, -6) or, only when second pile empty, (-5, 0, -3) for m = 2
- One pile or all piles, nonnegative amount per pile
 - (0,0,-3) or (-4,-8,-6) or (-6,0,-2) but not (-5,0,-3) for m=2
 - 2 piles left...?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Rules

There are n piles of matchsticks. Each player has two types of moves:

- Type I Take a positive number of matches from one pile.
- Type II Take a_1 matches from the first pile, a_2 matches from the second pile, and so on such that $a_1 \equiv a_2 \equiv \cdots \equiv a_n \equiv 0 \pmod{m}$ and $a_1 + \cdots + a_n > 0$.

The player who takes the last matchstick wins.

- 4 同 6 4 日 6 4 日 6

Rules

There are n piles of matchsticks. Each player has two types of moves:

- Type I Take a positive number of matches from one pile.
- Type II Take a_1 matches from the first pile, a_2 matches from the second pile, and so on such that $a_1 \equiv a_2 \equiv \cdots \equiv a_n \equiv 0 \pmod{m}$ and $a_1 + \cdots + a_n > 0$.

The player who takes the last matchstick wins.

- 4 同 6 4 日 6 4 日 6

Rules

There are n piles of matchsticks. Each player has two types of moves:

- Type I Take a positive number of matches from one pile.
- Type II Take a_1 matches from the first pile, a_2 matches from the second pile, and so on such that $a_1 \equiv a_2 \equiv \cdots \equiv a_n \equiv 0 \pmod{m}$ and $a_1 + \cdots + a_n > 0$.

The player who takes the last matchstick wins.

イロト 不得下 イヨト イヨト

Rules

There are n piles of matchsticks. Each player has two types of moves:

- Type I Take a positive number of matches from one pile.
- Type II Take a_1 matches from the first pile, a_2 matches from the second pile, and so on such that $a_1 \equiv a_2 \equiv \cdots \equiv a_n \equiv 0 \pmod{m}$ and $a_1 + \cdots + a_n > 0$.

The player who takes the last matchstick wins.

イロト イポト イモト イモト

Rules

There are n piles of matchsticks. Each player has two types of moves:

- Type I Take a positive number of matches from one pile.
- Type II Take a_1 matches from the first pile, a_2 matches from the second pile, and so on such that $a_1 \equiv a_2 \equiv \cdots \equiv a_n \equiv 0 \pmod{m}$ and $a_1 + \cdots + a_n > 0$.

The player who takes the last matchstick wins.

イロト 不得下 イヨト イヨト

Rules

There are n piles of matchsticks. Each player has two types of moves:

- Type I Take a positive number of matches from one pile.
- Type II Take a_1 matches from the first pile, a_2 matches from the second pile, and so on such that $a_1 \equiv a_2 \equiv \cdots \equiv a_n \equiv 0 \pmod{m}$ and $a_1 + \cdots + a_n > 0$.

The player who takes the last matchstick wins.

-				

ヘロト 不良 とうせい かいしょう

P-positions of 2-pile Matchbox Game, m = 2

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}										
6	\mathcal{N}										
5	\mathcal{N}										
4	\mathcal{N}										
3	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
2	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
1	\mathcal{N}	\mathcal{P}	\mathcal{N}								
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

30 / 35

イロト 不得下 イヨト イヨト 二日

P-positions of 2-pile Matchbox Game, m = 3

10	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
9	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
8	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}
7	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}
6	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
5	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
4	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
3	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
2	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
1	\mathcal{N}	${\mathcal P}$	\mathcal{N}								
0	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
	0	1	2	3	4	5	6	7	8	9	10

31 / 35

P-positions of 2-pile Matchbox Game, any m

Theorem (N.)

• There are m² P-positions in the 2-pile Matchbox Game.

くほと くほと くほと

Theorem (N.)

- There are m² P-positions in the 2-pile Matchbox Game.
- Each integer from 0 to $m^2 1$ appears exactly once as the first pile and once as the second pile in the set of all P-positions.

Theorem (N.)

- There are m² P-positions in the 2-pile Matchbox Game.
- Each integer from 0 to m² 1 appears exactly once as the first pile and once as the second pile in the set of all P-positions.
- Each of the m² ordered residue pairs modulo m, from (0,0) to (m − 1, m − 1), appears exactly once in the set of all P-positions.

Using the properties of the Matchbox Game, we can prove the following:

< 61 b

A B F A B F

Using the properties of the Matchbox Game, we can prove the following:

Theorem (N.)

There are a finite number of P-positions in the "one pile or all piles, nonnegative amount per pile" 3-pile generalization of m-modular Wythoff's Game.

イロト 不得下 イヨト イヨト

For generalizations of the m-modular Wythoff Game and the Matchbox Game:

- Are there a finite number of P-positions?
- What properties do the P-position satisfy?
- Is there a formula for the P-positions?

- 4 回 ト - 4 回 ト

For generalizations of the m-modular Wythoff Game and the Matchbox Game:

- Are there a finite number of P-positions?
- What properties do the P-position satisfy?
- Is there a formula for the P-positions?

In general, what property must a set of Type II moves satisfy that will ensure that a game has a finite number of P-positions?

イロト イポト イヨト イヨト

Acknowledgements

- Dr. Tanya Khovanova
- PRIMES
- MIT Math Dept

イロト イポト イヨト イヨト