Extensions of Classic Combinatorial Games

Nelson Niu
Mentor: Dr. Tanya Khovanova
PRIMES Conference
May 21, 2016

Example: Wythoff's Game

Rules

There are two piles of matchsticks. Each player has two types of moves:

- Type I - Take a positive number of matches from one pile.
- Type II - Take the same positive number of matches from both piles. The player who takes the last matchstick wins.

Example: Wythoff's Game

Rules

There are two piles of matchsticks. Each player has two types of moves:

- Type I - Take a positive number of matches from one pile.
- Type II - Take the same positive number of matches from both piles. The player who takes the last matchstick wins.

Example: Wythoff's Game

Rules

There are two piles of matchsticks. Each player has two types of moves:

- Type I - Take a positive number of matches from one pile.
- Type II - Take the same positive number of matches from both piles. The player who takes the last matchstick wins.

Example: Wythoff's Game

Rules

There are two piles of matchsticks. Each player has two types of moves:

- Type I - Take a positive number of matches from one pile.
- Type II - Take the same positive number of matches from both piles. The player who takes the last matchstick wins.

Game Positions

We write $\left(a_{1}, \ldots, a_{n}\right)$ to denote a position with n piles of sizes a_{1}, \ldots, a_{n}. For Wythoff's game, $n=2$.

Definition

A game is at a P-position when the person who played Previously will win, provided both players play optimally.

Game Positions

We write $\left(a_{1}, \ldots, a_{n}\right)$ to denote a position with n piles of sizes a_{1}, \ldots, a_{n}. For Wythoff's game, $n=2$.

Definition

A game is at a P-position when the person who played Previously will win, provided both players play optimally.

Definition

A game is at an N -position when the person to play Next will win, provided both players play optimally.

Game Positions

We write $\left(a_{1}, \ldots, a_{n}\right)$ to denote a position with n piles of sizes a_{1}, \ldots, a_{n}. For Wythoff's game, $n=2$.

Definition

A game is at a P -position when the person who played Previously will win, provided both players play optimally.

Definition

A game is at an N-position when the person to play Next will win, provided both players play optimally.

- All positions are either P-positions or N-positions.
- Every move from a P-position leads to an N-position.
- From every N -position, there exists a move to a P-position.
- One can always compute whether a position is a P-position or an N-position.

P-Positions of Wythoff's Game

Theorem (Wythoff, 1907)

All positions of the form $\left(\lfloor n \phi\rfloor,\left\lfloor n \phi^{2}\right\rfloor\right)$ or $\left(\left\lfloor n \phi^{2}\right\rfloor,\lfloor n \phi\rfloor\right)$, for nonnegative integers n, are P-positions. All other positions are N-positions. Here $\phi=\frac{1+\sqrt{5}}{2}$.

For example, $(0,0),(1,2),(2,1),(3,5),(5,3),(4,7),(7,4), \ldots$ are all P-positions.

Variant: m-Modular Wythoff

Rules

There are two piles of matchsticks. Each player has two types of moves:

- Type I - Take a positive number of matches from one pile.
- Type II - Take a matches from one pile and b matches from the other, provided that a and b are positive and $a \equiv b(\bmod m)$.
The player who takes the last matchstick wins.

Example: $m=2$

Nater

-

\square ?

8

\square

5

$4 \square$

Example: $m=2$

2

(1)

$8-7=1$

$$
5-3=2
$$

Example: $m=2$

10											
9											
8											
7											
6											
5											
4											
3											
2											
1											
0											
	0	1	2	3	4	5	6	7	8	9	10

Example: $m=2$

10											
9											
8											
7											
6											
5											
4											
3											
2											
1											
0	\mathcal{P}										
	0	1	2	3	4	5	6	7	8	9	10

Example: $m=2$

10	\mathcal{N}		\mathcal{N}								
9	\mathcal{N}	\mathcal{N}									
8	\mathcal{N}		\mathcal{N}								
7	\mathcal{N}	\mathcal{N}									
6	\mathcal{N}		\mathcal{N}								
5	\mathcal{N}	\mathcal{N}									
4	\mathcal{N}		\mathcal{N}								
3	\mathcal{N}	\mathcal{N}									
2	\mathcal{N}		\mathcal{N}								
1	\mathcal{N}	\mathcal{N}									
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

Example: $m=2$

10	\mathcal{N}		\mathcal{N}								
9	\mathcal{N}	\mathcal{N}									
8	\mathcal{N}		\mathcal{N}								
7	\mathcal{N}	\mathcal{N}									
6	\mathcal{N}		\mathcal{N}								
5	\mathcal{N}	\mathcal{N}									
4	\mathcal{N}		\mathcal{N}								
3	\mathcal{N}	\mathcal{N}									
2	\mathcal{N}	\mathcal{P}	\mathcal{N}		\mathcal{N}		\mathcal{N}		\mathcal{N}		\mathcal{N}
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}		\mathcal{N}		\mathcal{N}		\mathcal{N}	
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

Example: $m=2$

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}										
6	\mathcal{N}										
5	\mathcal{N}										
4	\mathcal{N}										
3	\mathcal{N}										
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

Example: $m=3$

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}										
6	\mathcal{N}										
5	\mathcal{N}										
4	\mathcal{N}										
3	\mathcal{N}										
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

Example: $m=4$

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}										
6	\mathcal{N}										
5	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
4	\mathcal{N}										
3	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

Example: $m=5$

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
6	\mathcal{N}										
5	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
4	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}						
3	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

Example: $m=6$

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
6	\mathcal{N}										
5	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
4	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}						
3	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

Example: $m=7$

10	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
6	\mathcal{N}	\mathcal{P}									
5	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
4	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}						
3	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

Example: $m=8$

10	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
6	\mathcal{N}	\mathcal{P}									
5	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
4	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}						
3	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
2	\mathcal{N}	\mathcal{P}	\mathcal{N}								
1	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

Any m

Theorem (N .)

Let a_{m} be the unique integer for which $\left\lfloor a_{m} \phi\right\rfloor<m \leq\left\lfloor\left(a_{m}+1\right) \phi\right\rfloor$. Then the P-positions of m-modular Wythoff consist of the set $\mathcal{P}_{a_{m}}=$ $\left\{(0,0),\left(\lfloor\phi\rfloor,\left\lfloor\phi^{2}\right\rfloor\right),\left(\left\lfloor\phi^{2}\right\rfloor,\lfloor\phi\rfloor\right), \ldots,\left(\left\lfloor a_{m} \phi\right\rfloor,\left\lfloor a_{m} \phi^{2}\right\rfloor\right),\left(\left\lfloor a_{m} \phi^{2}\right\rfloor,\left\lfloor a_{m} \phi\right\rfloor\right)\right\}$. Here $\phi=\frac{1+\sqrt{5}}{2}$.

Any m

Theorem (N.)

Let a_{m} be the unique integer for which $\left\lfloor a_{m} \phi\right\rfloor<m \leq\left\lfloor\left(a_{m}+1\right) \phi\right\rfloor$. Then the P-positions of m-modular Wythoff consist of the set $\mathcal{P}_{a_{m}}=$ $\left\{(0,0),\left(\lfloor\phi\rfloor,\left\lfloor\phi^{2}\right\rfloor\right),\left(\left\lfloor\phi^{2}\right\rfloor,\lfloor\phi\rfloor\right), \ldots,\left(\left\lfloor a_{m} \phi\right\rfloor,\left\lfloor a_{m} \phi^{2}\right\rfloor\right),\left(\left\lfloor a_{m} \phi^{2}\right\rfloor,\left\lfloor a_{m} \phi\right\rfloor\right)\right\}$. Here $\phi=\frac{1+\sqrt{5}}{2}$.

Note that

$$
\mathcal{P}_{a_{2}} \subseteq \mathcal{P}_{a_{3}} \subseteq \mathcal{P}_{a_{4}} \subseteq \cdots \subseteq \mathcal{P}
$$

where \mathcal{P} is the set of P -positions for the original Wythoff's game.

Generalizations of m-modular Wythoff

3 piles: What should the possible moves be?

Generalizations of m-modular Wythoff

3 piles: What should the possible moves be?

- Any subset of piles
- $(0,0,-3)$ or $(-4,-8,-6)$ or $(-5,0,-3)$ for $m=2$

Generalizations of m-modular Wythoff

3 piles: What should the possible moves be?

- Any subset of piles
- $(0,0,-3)$ or $(-4,-8,-6)$ or $(-5,0,-3)$ for $m=2$
- One pile or all nonempty piles, positive amount per pile
- $(0,0,-3)$ or $(-4,-8,-6)$ or, only when second pile empty, $(-5,0,-3)$ for $m=2$

Generalizations of m-modular Wythoff

3 piles: What should the possible moves be?

- Any subset of piles
- $(0,0,-3)$ or $(-4,-8,-6)$ or $(-5,0,-3)$ for $m=2$
- One pile or all nonempty piles, positive amount per pile
- $(0,0,-3)$ or $(-4,-8,-6)$ or, only when second pile empty, $(-5,0,-3)$ for $m=2$
- One pile or all piles, nonnegative amount per pile
- $(0,0,-3)$ or $(-4,-8,-6)$ or $(-6,0,-2)$ but not $(-5,0,-3)$ for $m=2$

Generalizations of m-modular Wythoff

3 piles: What should the possible moves be?

- Any subset of piles
- $(0,0,-3)$ or $(-4,-8,-6)$ or $(-5,0,-3)$ for $m=2$
- One pile or all nonempty piles, positive amount per pile
- $(0,0,-3)$ or $(-4,-8,-6)$ or, only when second pile empty, $(-5,0,-3)$ for $m=2$
- One pile or all piles, nonnegative amount per pile
- $(0,0,-3)$ or $(-4,-8,-6)$ or $(-6,0,-2)$ but not $(-5,0,-3)$ for $m=2$
- 2 piles left...?

Matchbox Game

Rules

There are n piles of matchsticks. Each player has two types of moves:

- Type I - Take a positive number of matches from one pile.
- Type II - Take a_{1} matches from the first pile, a_{2} matches from the second pile, and so on such that $a_{1} \equiv a_{2} \equiv \cdots \equiv a_{n} \equiv 0(\bmod m)$ and $a_{1}+\cdots+a_{n}>0$.
The player who takes the last matchstick wins.

Matchbox Game

Rules

There are n piles of matchsticks. Each player has two types of moves:

- Type I - Take a positive number of matches from one pile.
- Type II - Take a_{1} matches from the first pile, a_{2} matches from the second pile, and so on such that $a_{1} \equiv a_{2} \equiv \cdots \equiv a_{n} \equiv 0(\bmod m)$ and $a_{1}+\cdots+a_{n}>0$.
The player who takes the last matchstick wins.

Matchbox Game

Rules

There are n piles of matchsticks. Each player has two types of moves:

- Type I - Take a positive number of matches from one pile.
- Type II - Take a_{1} matches from the first pile, a_{2} matches from the second pile, and so on such that $a_{1} \equiv a_{2} \equiv \cdots \equiv a_{n} \equiv 0(\bmod m)$ and $a_{1}+\cdots+a_{n}>0$.
The player who takes the last matchstick wins.

Matchbox Game

Rules

There are n piles of matchsticks. Each player has two types of moves:

- Type I - Take a positive number of matches from one pile.
- Type II - Take a_{1} matches from the first pile, a_{2} matches from the second pile, and so on such that $a_{1} \equiv a_{2} \equiv \cdots \equiv a_{n} \equiv 0(\bmod m)$ and $a_{1}+\cdots+a_{n}>0$.
The player who takes the last matchstick wins.

Matchbox Game

Rules

There are n piles of matchsticks. Each player has two types of moves:

- Type I - Take a positive number of matches from one pile.
- Type II - Take a_{1} matches from the first pile, a_{2} matches from the second pile, and so on such that $a_{1} \equiv a_{2} \equiv \cdots \equiv a_{n} \equiv 0(\bmod m)$ and $a_{1}+\cdots+a_{n}>0$.
The player who takes the last matchstick wins.

Matchbox Game

Rules

There are n piles of matchsticks. Each player has two types of moves:

- Type I - Take a positive number of matches from one pile.
- Type II - Take a_{1} matches from the first pile, a_{2} matches from the second pile, and so on such that $a_{1} \equiv a_{2} \equiv \cdots \equiv a_{n} \equiv 0(\bmod m)$ and $a_{1}+\cdots+a_{n}>0$.
The player who takes the last matchstick wins.

P-positions of 2-pile Matchbox Game, $m=2$

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}										
7	\mathcal{N}										
6	\mathcal{N}										
5	\mathcal{N}										
4	\mathcal{N}										
3	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
2	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
1	\mathcal{N}	\mathcal{P}	\mathcal{N}								
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

P-positions of 2-pile Matchbox Game, $m=3$

10	\mathcal{N}										
9	\mathcal{N}										
8	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}						
7	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}							
6	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
5	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
4	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}						
3	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}	\mathcal{N}
2	\mathcal{N}	\mathcal{N}	\mathcal{P}	\mathcal{N}							
1	\mathcal{N}	\mathcal{P}	\mathcal{N}								
0	\mathcal{P}	\mathcal{N}									
	0	1	2	3	4	5	6	7	8	9	10

P-positions of 2-pile Matchbox Game, any m

Theorem (N .)

- There are $m^{2} P$-positions in the 2-pile Matchbox Game.

P-positions of 2-pile Matchbox Game, any m

Theorem (N .)

- There are $m^{2} P$-positions in the 2-pile Matchbox Game.
- Each integer from 0 to $m^{2}-1$ appears exactly once as the first pile and once as the second pile in the set of all P-positions.

P-positions of 2-pile Matchbox Game, any m

Theorem (N.)

- There are $m^{2} P$-positions in the 2-pile Matchbox Game.
- Each integer from 0 to $m^{2}-1$ appears exactly once as the first pile and once as the second pile in the set of all P-positions.
- Each of the m^{2} ordered residue pairs modulo m, from $(0,0)$ to ($m-1, m-1$), appears exactly once in the set of all P-positions.

Tying it all together

Using the properties of the Matchbox Game, we can prove the following:

Tying it all together

Using the properties of the Matchbox Game, we can prove the following:

Theorem (N.)

There are a finite number of P-positions in the "one pile or all piles, nonnegative amount per pile" 3-pile generalization of m-modular Wythoff's Game.

Future

For generalizations of the m-modular Wythoff Game and the Matchbox Game:

- Are there a finite number of P-positions?
- What properties do the P-position satisfy?
- Is there a formula for the P-positions?

Future

For generalizations of the m-modular Wythoff Game and the Matchbox Game:

- Are there a finite number of P-positions?
- What properties do the P-position satisfy?
- Is there a formula for the P-positions?

In general, what property must a set of Type II moves satisfy that will ensure that a game has a finite number of P -positions?

Acknowledgements

- Dr. Tanya Khovanova
- PRIMES
- MIT Math Dept

